
Automated Job Submission

Management for Grid Computing

Gaëtan Longrée

Master Thesis

Master en Architecture des Systèmes Informatiques

Academic year 2018-2019

i

Acknowledgments

There comes a time in a man’s life where one may ponder: “how did I get here?” While

this paper and the process of redacting it certainly had me contemplate this very fact, this

section is not dedicated to how, but rather whom do I have to thank for this journey. After 25

years of this life, five of which spent in the higher education system, and a total of seven years

spent studying in the IT field, I have had the privilege of encountering some amazing people

that made me who I am today. This thesis, marking the end of a master’s degree cursus, seems

like the perfect opportunity put my gratitude to paper.

First and foremost, I would like to thank my mother, without whom none of this would

be possible; for pushing me forward, supporting me throughout the years and for all that she

has done for me and more. Despite all the challenges she faced, she has always dedicated

herself to my brothers and myself, and I would not be the man I am today if it were not for

her.

I would like to thank all of my many friends spread around the world, wherever they

may be, you have in some aspect or another brought joy, laughter and support to my life, even

more so when times were hard and life seemed dull. A special thanks goes out to my Dungeons

and Dragons group of friends; thank you for all the cheers and laughter through the years, and

hopefully to many more years of rolling dice alongside you.

A special thanks to my promoting professor, Dr Samuel Hiard, for his guidance,

experience, knowledge, wisdom and his continuous follow-up on my progress through this

project.

I would like to thank the entire staff of Henallux’s “Département Technique de

Marche-en-Famenne” for putting together such a welcoming environment for working

through a master’s degree; all the professors for their knowledge and expertise shared with

us; and to all the members of the board of jury for their continuous feedback through the

process of creating this master thesis.

Finally, yet importantly, I would like to thank all the people that I did not mention

directly but who contributed in my education and experience, whether directly or indirectly,

in both my professional and personal life.

ii

Table of Contents

Introduction ... 1

Theoretical Concepts .. 3

Slurm ... 3

Problem Statement .. 5

Needs Analysis ... 6

Needs Validation .. 8

Objectives & Challenges ... 10

State of the Art .. 12

Academic Projects ... 12

Commercial Solutions .. 13

Slurm Federation ... 14

Takeaways ... 15

Overview of the Solution .. 17

Architecture ... 18

Clusters Inventory... 19

Authentication .. 19

Database ... 21

Modular Approach... 23

Module Interaction ... 24

Inter Module Communication and Input/Output Parameters 28

User Created Modules .. 30

Task Submission & Follow-up .. 31

Independency from the Workload Manager ... 32

Error Management and Monitoring ... 33

Error Management ... 34

Cluster Monitoring ... 34

Result Retrieval.. 35

Job Result Storage .. 36

Proof of Concept .. 37

Features Implemented .. 37

iii

Design Choices ... 37

Architecture ... 38

Proof of Concept Workflow ... 39

User Input .. 41

External Modules Support ... 43

Workload Manager Independency .. 46

Result Storage and Retrieval .. 47

Improvements ... 48

Next Steps ... 49

Future Works ... 50

Additional External Modules ... 50

Dedicated Packet Manager .. 51

Conclusion ... 52

Bibliography ... 54

iv

Table of Figures

Figure 1 - Environment analysis outlining the interactions between the components/actors. 7

Figure 2 - Overview of the proposed architecture for a job submission platform. 18

Figure 3 - High-level overview of the modular approach. ... 24

Figure 4 - Detailed overview of the modular approach. .. 26

Figure 5 - Example of modules' sequence of execution as determined by a user. 27

Figure 6 - Overview of the Proof of Concept’s architecture. ... 38

Figure 7 - Overview of the Proof of Concept tool's workflow. .. 40

Figure 8 - Sample output of a YAML user input file. .. 42

Figure 9 - Sample output of a YAML user modules specification file. 44

https://d.docs.live.net/c0df2a636b82874a/ACADEMIC/COURSES/TFE/LONGREE%20Gaetan%20-%20TFE.docx#_Toc10481280
https://d.docs.live.net/c0df2a636b82874a/ACADEMIC/COURSES/TFE/LONGREE%20Gaetan%20-%20TFE.docx#_Toc10481283

1

Introduction

Since the dawn of the digital era, mankind has used computers to aid in performing

complex operations. From electromechanical switches and vacuum tubes of ages past, to the

silicon transistors of our modern days, these testaments of human ingenuity have grown more

and more powerful with each iteration. Through this continuous evolution, computers have

been able to solve increasingly complex problems, some of which were the foundation of

groundbreaking discoveries that have shaped the world we know today.

Nevertheless, modern problems require modern solutions, and today’s computers

must face an increasing demand for processing power to solve more and more complex

problems. High-performance clusters have risen to solve such increasing demands: these

mainframes are composed of multiple computers linked together in order to perform as one

large entity. Specialized software have been developed to leverage the combined computing

power of each individual computer into one large processing unit.

These clustering software, albeit performant, have proved to be aimed towards

efficiency as opposed to being user oriented. Despite this approach being motivated by

modern standards, this has created a general disparity between existing solutions. As a result,

a same disparity has developed between users’ interactions with cluster systems. The

procedure to submit tasks to these clusters has become tedious to the point where users have

to create their own personal solutions for their submission workflows. In some extreme cases,

the complexity of the submission procedure itself has deterred some users from making use

of these clusters.

This thesis proposes and discusses a new architecture to solve the disparity and

complexity in the users’ submission workflows by interacting in a more unified and simplified

manner with some of the modern high-performance clusters of today. More specifically, this

architecture delves into the interaction with the clusters available throughout the universities

in Belgium that are members of the CÉCI1. This architecture is presented as an automated job

submission and management platform. The objective is to offer a more user-oriented

abstraction layer for existing clustering software, while maintaining a strong set of features to

1 “Consortium des équipements de Calcul Intensif” - Consortium for Computation Intensive Equipment.

2

leverage the performance of these clusters by providing flexibility to the users’ submission

workflows.

This document will start off by introducing some key concepts, before discussing the

problem statement, and defining the reasons behind the need for such a platform. Following

will be a list of objectives and challenges faced by the project, as well as an analysis of the

existing solutions akin to the platform proposed herein. Subsequently, the platform proper

will be discussed at lengths, addressing how the solution proposed responds to the problem

statement, the objective and challenges discussed earlier. To demonstrate the feasibility of

such a solution, a proof of concept has been created and is discussed after the overview of

the solution. Finally, a few words on any potential future projects and a conclusion will draw

this thesis to a close.

3

Theoretical Concepts

In the scientific world, it is common for researchers to have to perform highly complex

calculations, so complex in fact that a computer is required to compute them. However,

despite the growth in processing power in the last decades, commodity hardware alone may

not always be sufficient to perform the calculations in a timely manner.

A high-performance computing (HPC) cluster is a group of highly performant

computers/servers, called nodes or compute nodes, interconnected together to share

resources in order to allow performing multiple jobs in parallel across multiple nodes.

To manage the jobs and the nodes within the cluster, an HPC cluster usually requires a

combination of two software. A scheduler, required to manage the various jobs submitted

and to distribute them across the nodes accordingly, and a resource manager, used to manage

the resource allocations, such as processor or memory, of the nodes across the jobs to run.

In most cases, a user will interact with a head node (or master node depending on the

scheduler/resource manager used). This node will receive the jobs submitted by a user, and

based on the scheduler and resource manager configuration and/or algorithm, as well as the

user-given input (such as desired CPU power or memory size), the job will be allocated to a

number of nodes and executed (given that the cluster has free nodes and enough resources

to execute the job at the time of submission).

Slurm

Slurm is an open source workload manager for HPC clusters combining both a

scheduler and a resource manager. It is also the solution used by the various Belgian

universities that are part of the CÉCI. Slurm provides a performant and scalable solution that

can also be flexible through the use of a plugin mechanism that allows to add new features

such as authentication mechanisms or additional schedulers.

Slurm provides various command line utilities to submit, monitor and manage

submitted jobs, such as sbatch to submit a job, sinfo or squeue to monitor the cluster

resources or the submitted jobs respectively, or scancel to cancel/stop a submitted job.

4

To submit a job through Slurm, a user is required to create a Bash script to act as a

wrapper for the program to execute. In the script file the user needs to enter various options

such as the resources requirements, number of tasks to run in parallel, the output files, but

also which modules to load if the user’s job requires multi-threaded, multi-process or memory

sharing capabilities. With the Bash script complete, the user can then proceed to submit the

job using the sbatch command and monitor his job execution with squeue.

5

Problem Statement

The CÉCI (“Consortium des équipements de Calcul Intensif”2) is an association of

various universities in Belgium that have gathered to aggregate their high-performance

computation clusters in order to unify and simplify the availability of computing resources for

university members and researchers. These clusters are hosted by the universities part of the

association, including the University of Liège, the University of Namur, the University of

Brussels and the University of Leuven.3

However, while this consortium allows the use of compute intensive hardware, the

clusters remain widespread and require the researchers to make the decision of which

destination cluster to use at which location. As introduced earlier in Slurm, the researcher has

to create the script with appropriate variables for the cluster’s framework, manually connect

to the cluster and finally start running his task from the command line. Moreover, there is no

explicit mechanism in place to notify the researcher of the job status, meaning that unless the

script was written to run for a finite amount of time, the user must manually connect back to

the cluster to monitor the status of his job and to collect the job results when complete.

Although this method allows a certain freedom for the researchers, it also proves to

be a hindrance to the researchers’ workflow. Furthermore, this process implies that the

researcher is computer literate enough to understand the computational needs of his specific

job, know the Bash scripting language and the process required to submit a task to the cluster.

The latter is not necessarily a given as the researchers that can make use of the clusters include

all the faculties’ students and professors that are part of the universities members of the CÉCI.

This can range from astrophysicists making calculations on gravitational waves, to chemists

working on protein calculations.

2 Consortium for Computation Intensive Equipment.
3 More information at www.ceci-hpc.be.

http://www.ceci-hpc.be/

6

Needs Analysis

Following a first overview of the problem statement, a more in-depth analysis of the

requirements that would need to be fulfilled was performed. The first step in that analysis was

to examine the present environment in order to determine the components that would

directly impact the architecture to design. This first step highlighted the following components

as part of the environment:

- Researchers/Users that wish to submit a job on a cluster;

- The job to submit;

- The clusters, and more specifically the destination cluster for the job execution;

- The job’s output/result;

- The user’s computer;

- The network between the user’s computer and the cluster.

Based on the first analysis of the environment, a second analysis was performed to

examine more closely the interaction between each external component and the desired final

product. This analysis allows to extrapolate various functions required by the architecture to

design.

The diagram in Figure 1 below represents the components outlined in the first analysis

and the interaction required with the final solution to design (temporarily named “Submission

platform”). The various links between the components are differentiated between FC and FT.

FC represents a “function by constraint”, meaning that they occur directly between two

entities in the system. FT represents a “function by transfer”, meaning that they occur

indirectly between more than two entities.

7

Figure 1 - Environment analysis outlining the interactions between the components/actors.

The following table explains the various functions, their meaning and the criteria that

represent the expected behaviors.

Function Detail Criteria

FC1
The researcher has a job to submit for

execution.

- Access to the platform is restricted to

researchers and authorized users.

FC2
The platform can adapt to a varying number

of clusters.

- The platform’s clusters inventory is

dynamic.

FC3
The cluster is able to interpret and execute

the job to submit.

- The job is written in a language supported

by the destination cluster;

- Alternatively, the user is able to install the

language required for the job’s execution.

FC4
The platform is accessible from the

researcher’s computer.

- The platform is hosted in a location that is

both reachable by the researcher, and

where the platform can successfully reach

the clusters.

8

FT1
The research submits a job to a cluster

through the submission platform.

- The choice of destination cluster is done

based on the type of job to execute;

- The job can seamlessly be submitted to the

platform;

- The platform is able to transfer and submit

the task to the destination cluster.

FT2
The cluster returns the job’s result to the

submission platform.

- The platform is able to retrieve/receive the

job’s result/output;

- In case of error during execution, the user is

notified.

FT3
The researcher is able to retrieve the job’s

result through the network.

- The research can easily view and retrieve

the result of the job’s execution.

FT4
The researcher can use his/her computer to

access the submission platform.

- The submission platform is accessible by the

researcher independently of his/her work

environment (computer-wise).

Needs Validation

Following the analysis of the environment and the functions/criteria required by the

final architecture, the last analysis performed was a validation of whether the project’s

features and functions would satisfy the problem statement. This is done by defining both the

“why” and “what for” of the final solution and listing the reason(s) for each.

- Why does the need exist?

o Reason 1: the researcher must determine to which cluster to connect to

before submitting a job;

o Reason 2: the researcher must connect manually and remotely to the

desired destination cluster;

o Reason 3: the researcher must create and adapt a script based on both the

job’s need and the destination cluster;

o Reason 4: the researcher must submit a job and retrieve its result manually

by connecting to the cluster every time.

9

- What for/To what end does the need exist?

o To facilitate the procedure of submitting a job and retrieving its result;

o To provide a central location for submitting/consulting jobs scattered

across multiple clusters.

Based on the reasons outlined above, a quick table was redacted to emit initial ideas

and to provide a solution to each reason that creates the need for this project. Each objective

mentioned is then further improved upon throughout this project’s overview.

Reason Proposed Solution

1
The researcher must determine to which cluster

to connect to before submitting a job.

The choice of destination cluster is either

automated or greatly simplified.

2
The researcher must connect manually and

remotely to the desired destination cluster.

The researcher is not required to manually

connect to each destination cluster.

3

The researcher must create and adapt a script

based on both the job’s need and the

destination cluster.

The script is created and adapted on behalf of the

researcher based on the desired destination

cluster.

4

The researcher must launch a job and retrieve

its result manually by connecting to the cluster

every time.

Job submission and retrieval is done on behalf of

the researcher from a central interface

independently of the job’s original destination

cluster.

10

Objectives & Challenges

The goal of this project is to conceptualize a software architecture that will act as an

interface between the researchers and the various HPC clusters part of the CÉCI and spread

across the universities in Belgium. The objective being to simplify the workflow required by

the researchers to choose a destination cluster, submit their computation job, and later

retrieve the results.

The main challenge of this project is the modular aspect requested. This implies that if

desired by a user, the architecture can adopt one or more new modules designed for adding

or replacing an existing task. As an example, given that the first iteration of the software is to

let the researcher manually select the destination cluster, the software should be able to

accept a new module that would automatically determine the destination cluster based on a

given input.

Another challenge faced by this architecture is the task submission itself. This process

will require from the software to be able to remotely connect to the cluster, execute the code

on behalf of the researcher and retrieve the results of said execution. All the while also

maintaining a secure and stable environment to account for the potentially large amounts of

connections that could be performed by multiple researchers simultaneously.

Following the task submission itself, the next challenge is retrieving the results. The

architecture should be capable of retrieving results that may be stored in diverse forms, or in

the worst-case scenario may not be present at all. This implies that either execution of the

task and/or task retrieval must be able to handle exceptions and report the failure to retrieve

the results to both the software and, consequently, to the researcher.

Lastly, the architecture must also be able to monitor the cluster’s presence. This will

allow the software to be aware of the available destination clusters in order to either notify

the researcher or any modules tasked with selecting the destination cluster.

One challenge that has been voluntarily omitted through this project is the validity of

the tasks submitted. As a result, this architecture is developed with the assumption that the

code submitted by the researcher is correct and does not need to be checked for errors.

However, thanks to modularity objective of the project, the final architecture will be able to

11

accept future modules that may be tasked with the sole purpose of analyzing and validating

the submitted code for any errors.

12

State of the Art

Prior to performing an analysis of the architecture, a state of the art of the existing

solutions was established. This research yielded mixed results, some solutions being purely

for academic purposes, while other being commercially distributed.

While the academic projects were openly discussed in scientific papers, the

commercial products were not as thoroughly documented, hindering the depth of the analysis

that was capable. Nonetheless, studying the overview of the functionalities provided by these

commercial solutions helped in inspiring the architecture ensued by this project.

Academic Projects

Pegasus is a framework discussed in the paper “Pegasus: A framework for mapping

complex scientific workflows onto distributed systems” (Deelman, et al., 2005) which proposes

a framework in which scientific workflows for complex calculations can be abstracted to

render them independent from the underlying execution platform. The framework offers an

extensive number of features to provide flexibility and reliability in mapping the abstract

scientific workflows to any destination underlying hardware. The mapping itself is performed

by redefining the workflow provided as an input to the resources available on the destination

computing host. This mapping requires a specific software agent deployed on each destination

node to gather information and execute the workflow on behalf of the user.

The paper “An Interoperable, Standards-based Grid Resource Broker and Job

Submission Service” (Elmroth & Tordsson, 2005) presents a job submission solution that,

unlike the Pegasus framework, attempts to be as independent as possible of the Grid

middleware used on the clusters. Despite this fact, some configuration is still required to

determine the middleware in use and server-side scripts may also be required (this was the

case for the NorduGrid ARC discussed in the paper). The job submission platform does not

require abstracting of the workflows but provides a web interface for users to submit a job

description using a standardized JSDL4 document. Cluster selection is performed by the

4 Job Submission Description Language – an XML-based data structure for describing non-interactive

computational jobs.

13

architecture using a resource brokering algorithm based on a priori estimations of the total

time it would take to perform the submitted job.

The paper “Creating Personal Adaptive Clusters for Managing Scientific Jobs in a

Distributed Computing Environment” (Walker, Gardner, Litvin, & Turner, 2006) discusses a job

submission solution in the context of multiple simultaneous jobs being launched across

multiple geographically separate but logically interconnected HPCs. It does so by using proxies

deployed in each clusters’ site to which a connection is established upon each virtual login

performed on the user’s local machine. A master agent is then used from the user’s machine

to communicate with the remote proxies, who will interact with the local cluster’s resources

(scheduler, job queue, etc.). This project is highly dependent on the middleware used in the

HPC; however, it does offer support for other middleware by using an approach of wrapping

the underlying middleware script into an overlay script (e.g.: Condor/SGE5 job-starter daemon

executables are wrapped in a GridShell6 script).

The paper “Open Standards-based Interoperability of Job Submission and Management

Interfaces across the Grid Middleware Platforms gLite and UNICORE” (Marzolla, et al., 2007)

aims to make use of open standards created by the Open Grid Forum (OGF) to allow two

groups of HPC clusters using different Grid middleware to provide seamless interoperability.

This is achieved by leveraging the web services offered by both the gLite and the UNICORE

middleware that support job submission using JSDL formatted job description. It is important

to note that this interoperability for job submission is only possible because the gLite and

UNICORE middleware support the open standards, however the clusters remain very

independent and the paper does not discuss a single and centralized point of contact for job

submission.

Commercial Solutions

While many commercial solutions related to HPC clustering technologies exist

(including job schedulers, workload managers and grid computing software), very few were

found in close relation to this project’s scope: a tool/architecture acting as an interface for

5 Sun Grid Engine – a grid computer middleware developed by Oracle Corporation.
6 Scripting language used for managing submission on Condor-based clusters.

14

submitting jobs to an HPC cluster or group of clusters. Below is a brief introduction of the

solutions found.

eQueue is a web-based job submission solution offered by Advanced Clustering

Technologies Inc. (ACT). eQueue provides a front-end for their underlying clustering

technologies, supporting existing schedulers that have already been deployed. The Job

submission forms are highly customizable by any administrator, although they require

extensive manual configuration on a head cluster node. Their web-based submission platform

aims at simplifying the job submission in order to abstract the complexity of command-line

based submission for regular users. This solution also helps in providing administrators with

improved overview and monitoring on their cluster’s usage.

EnginFrame is another example of HPC cluster portal from Nice Software. Similarly to

eQueue, this portal is compatible with multiple underlying job schedulers including Slurm and

Torque/MOAB. EnginFrame is an open framework relying on Java and SOAP/XML to present

a web interface for submitting, monitoring and retrieving jobs to clusters. EnginFrame also

offers easy integration with external application and third-party solutions through

WebServices publication.

Slurm Federation

Slurm, the workload manager used in the CÉCI’s clusters, also includes a federation

feature, which has been available since version 17.11 (late 2017/early 2018). The Slurm

Federation feature is a scheduling process specifically designed for multiple HPC clusters

interconnected together. As opposed to the standalone Slurm manager, the federation

feature allows to submit a job from a single cluster but is then replicated to all configured

clusters in the federation. Each cluster will attempt to schedule it to its own local cluster, the

first cluster to successfully allocate the resources queues the job with a federation-wise

unique job ID.

This feature allows to simplify job submission across group of clusters in a manner that,

unless the user specifies it manually, the job can be submitted to any cluster member of the

federation, independently from the cluster where the job was originally submitted.

15

Takeaways

After reviewing and analyzing the various solutions mentioned above, I noted that

while the academic project aimed for open source solutions, they also tend to remain rather

closed in their designs, not leaving much room for change or adaptability. This is mainly due

to the dependency between the various processes and operations performed within each

project’s architecture.

Another aspect I noticed from the academic projects were the dependency of most of

the projects with the underlying grid middleware and/or scheduler used within the clusters.

While I understand the benefits this dependency provides in terms of functionality, this

renders the project statically linked to a single middleware/scheduler, hindering expansion

capabilities between heterogeneous clusters.

The growing use of open standards throughout projects for job submission in grid

computing is a major step forward to render heterogeneous grid clusters more and more

interoperable. However, one might criticize the use of XML-like data structures in standards

such as JSDL, as opposed to more modern and more human readable standards such as JSON

or YAML.

Another potential issue might be the age of such academic projects ranging from 2005

to 2008, with some grid middleware mentioned already discontinued such as

Condor/GridShell. Due to the close integration with the Grid middleware, such projects are

very sensible to any major change in the middleware API, rendering them hardly evolutive.

This is further motivated by the evolution of computing hardware architectures and the

foreseeable introduction of quantum computing, which most certainly will require the grid

middleware to adapt to such a technological paradigms.

On the other end of the spectrum, commercial solutions are less present for job

submission solutions. Although maintained and up to date with a 2019 version, based on the

documentation provided EnginFrame seems to rely on old technology concepts for its

deployment. The requirements cited in the configuration guides mention multiple third-party

software solutions required (with a majority being proprietary) to be interconnected with the

16

framework in a bus-like network reminiscent of some of the past CORBA7-inspired

interactions. Additionally, while EnginFrame is presented as an open framework, access to the

source code is still protected by a licensing mechanism.

The alternative solution, eQueue, on the other hand, seems to be very closely related

to the solution envisioned for this project. Despite citing compatibility with existing

schedulers, only Torque and GridEngine are mentioned in the documentation, with no word

on Slurm support for example. The web-based approach is very akin to the ideas behind this

project, however the major pitfall for its applicability to the CÉCI clusters is that eQueue is

aimed towards supporting a single cluster per submission platform, as opposed to multi-

cluster support desired for this project.

A common setback found between commercial solutions, and potentially most of the

commercial solutions to come, is the proprietary nature of their development. Due to this fact,

any desire to make a platform more modular and flexible, both for the administrators and for

the users/researchers, becomes more complex, even impossible in a worst-case scenario. One

example is that although eQueue allows an administrator to create custom forms for specific

job submissions, a submission must still fall within a range of pre-defined variables specified

by an administrator, thus not giving full freedom to the users. Furthermore, a user cannot

freely create a custom submission workflow and is limited to the submission workflows

created by the administrators.

Lastly, midway through the project’s progress, I was informed that the workload

manager used in the CÉCI’s clusters, Slurm, was planned to deploy the federation feature

throughout the clusters. While still under testing and configuration at the time of this writing,

this feature presents a major impact in regard to this project’s utility. As a matter of fact, Slurm

federation greatly simplifies the submission throughout the clusters without requiring the

user to directly connect to a specific target cluster. This prospect is amongst one of the key

factors outlined in the Needs Analysis performed earlier. Nonetheless, as will be explained

later on, Slurm Federation is just a variation of the underlying workload manager, and this

project’s goal is to remain as independent as possible from any specific workload managers.

7 Common Object Request Broker Architecture.

17

Overview of the Solution

The solution and its various mechanisms presented below have been designed with

several factors in mind. The foremost factor of the architecture is to be able to abstract the

complexity of job submission by presenting a simplified web interface to the researchers and

having the job submission process automated on behalf of the user.

Another aspect factored during the design process was the willingness to remain as

independent as possible from any gridware/middleware, scheduler or workload manager

used throughout any given cluster. In other words, the architecture has been designed to be

as generic as possible in relations to any cluster that it may come into contact with. This is only

possible to certain extent, due to some interactions required with the clusters’

scheduler/workload manager, there are limitations to this independency factor, as will be

defined later on.

In addition to the independency, a desire to make this platform as universal as possible

and compatible out of the box with an heterogeneous array of HPC clusters was a major factor,

as is underlined later in the Task Submission & Follow-up section. In a similar mindset, the

willingness to make this architecture with as small of a resource footprint as possible was

factored in so that deployment in a clustered environment is neither too resource intensive,

nor is it disruptive on the existing production environment.

Finally, as introduced in the Objectives & Challenges, the key factor of this solution is

the modularity aspect by allowing future integrations of external modules to add additional

steps or substitute existing steps with alternative processes. This modularity provides

additional freedom and future-proofing qualities to the architecture, while also introducing

complexity in the validation of the external module’s output results.

18

Architecture

The solution for a job submission platform proposed by this paper is represented in

high level by Figure 2 below. The process workflow represented is as follows:

- A user connects to the platform’s web server though a web interface using an

Internet browser and submits a job to be run on a specific cluster;

- The web server interacts with a database to read information regarding the clusters

and to write various information regarding the newly submitted job;

- The web server interacts with the desired target cluster to submit and monitor the

task;

- The job and cluster are monitored during execution and data are sent back to the

server and stored in the database for monitoring purposes;

- Once completed, the web server is notified of the job completion, and contacts a

mailer server to notify the user;

- The user connects to the web server and downloads the job’s output.

Figure 2 - Overview of the proposed architecture for a job submission platform.

19

Clusters Inventory

In order for the platform to be aware of the clusters available for job submission, an

administrator must enter the cluster’s information in an inventory list. This inventory is

represented by a database and should keep certain information regarding the clusters. The

minimum information to store is as follows:

- Hostname of the head/master node – to initiate connections from the platform;

- Workload manager used – although our target system for this project only uses

Slurm, this value could be useful in the future to allow the platform to support

clusters using a different workload manager, and allowing the job submission to be

dynamic based on the target cluster’s workload manager;

- List of operation best supported – this value can be presented to the users when

choosing a cluster or could be made available to any external module with

automatic decision of the target cluster.

As will be detailed in a later section, the inventory does not require the clusters

available resources to be inserted as this will be dynamically monitored remotely.

Authentication

In the context of this project, two authentications must be performed: one by the user

when connecting to the platform, and another performed by the platform when connecting

to one of the clusters.

Since the connection to the CÉCI clusters are done using CÉCI credentials, themselves

linked with the member universities, the authentication performed on the web interface will

have to be handled through an external LDAP8 directory server using the RADIUS9 protocol.

This will allow the platform to avoid storing any passwords, while keeping a Single Sign-On

approach for the users.

8 Lightweight Directory Access Protocol – open standard used for centralized management of distributed

directory resources.
9 Remote Authentication Dial-In User Service – protocol used for providing centralized Authentication,

Authorization and Accounting services.

20

As is, users wishing to connect to a CÉCI cluster through SSH must do so using a private

key, sent by one of the cluster’s administrator, and a passphrase for the private key

(determined upon registration).

For the platform to connect to the cluster, the platform will also require at least a

private SSH key to automate the authentication process to the cluster. While this process is

the simplest, it does not allow to submit jobs on behalf of a user. To parry this, there are

various possible alternatives.

One solution would be to overlook the user who submitted the job through command

line and rely solely on the platform’s database entry for tracking user submissions. This

method would however require some user limits and quotas to be lifted to allow the

platform’s account on the clusters to submit large quantities of jobs and to potentially store

large amounts of data.

Another solution would be to allow the platform’s user account on the clusters to

perform a user switch and authenticate as another user. In order to avoid storing passwords,

this would require the platform’s account on the clusters to have the privilege required to

switch users without requiring authentication.

Lastly, a third solution would be to have an automated process create a second key

pair upon a CÉCI’s account creation for a user. This key pair would be dedicated to the

submission platform and would allow to ensure a separation between an SSH session initiated

by the user and an SSH session initiated by the platform on behalf of another user.

These solutions have a different advantages and disadvantages. The first solution

would require a special account to be setup on the clusters, which could represent the least

cumbersome solution in terms of management overhead and would additionally represent

the least dangerous solution in regard to security.

The second solution is interesting as it would allow to retain a tracking of which user

submitted which tasks independently from the submission platform, but if the platform’s

account were to be compromised, it would represent a major security risk.

The third solution represents the most complex solution to implement and would

provide little added benefit compared to the second proposition, other than additional

21

tracking of user submissions through the SSH sessions. The third solution does represent the

most dangerous in terms of security risks: if the platform were to be compromised, the

secondary private keys stored on behalf of the users would be considered unsafe, requiring a

massive purge in public keys on the clusters, which in itself would add an important

administrative overhead.

Ultimately, the decision of authentication method to use for such a platform would fall

under to the various administrators in the CÉCI’s member universities. As such it will not be

further investigated in this project.

Database

As introduced in the architecture overview, a database is required to store information

to be used through a job submission’s process lifecycle. The following section takes a look at

a non-exhaustive list of information that should be considered when designing the production

database. In an effort to remain technology-agnostic, no database model or technology is

dictated and is purely left at the developer’s discretion. However, for the sake of simplicity,

the various groupings will be referred to as tables.

The first table required and already introduced earlier is the Clusters Inventory. This

table is tasked with simply listing the clusters usable as job submission destinations and to

maintain the information required for connecting to those cluster. Some of the elements to

take into consideration for this table include:

- A user-friendly name (different from the hostname/IP address);

- The cluster’s hostname/IP address;

- The port used for SSH connection;

- The workload manager/scheduler used;

- The type of job preferred.

Additionally, depending on the number of differences and requirements of each

workload manager/schedulers used, each cluster could also contain information specific to its

local workload manager configuration. One such example, in the case of the CÉCI’s clusters

and the Slurm workload manager, each cluster has a specific “partition” value used for

submission which differs from one cluster to another. This information could be stored along

22

with the cluster or in a separate table depending on the model implemented in the production

environment.

Another element that should also be taken into consideration are storage specific

values. Storing and accessing stored job results is an integral part of the platform and could

be variable from cluster to cluster. Having separate storage spaces for job execution and long-

term storage is common in cluster deployments; such information should also be stored along

with the clusters in database. This information could be stored both as absolute paths, or more

practically, as the name of the environment variables used on the clusters to identify these

storage spaces. Once again, using CÉCI’s clusters as an example, the location for a user’s

distributed home directory is identified using the CECIHOME environment variable. This

location differs from the working directory located at GLOBALSCRATCH which uses data

retention policies much different in terms of long-term storage. These values should be stored

in a globally unique field name in order to have a generic access to these values in the

underlying code, further abstracting the difference of destination clusters.

A second table that is mandatory for the platform’s correct execution is one dedicated

to tracking user submissions. This table is potentially the most complex as it should contain

the largest amount of information, including:

- The user’s username;

- The user’s email address;

- The destination cluster;

- The job submitted and whether it is a single local file, a folder or a remote git

repository;

- The commands to perform to execute the job;

- During and after execution: the status of a job, the exit code, the time allocated,

the resources used, etc.;

- Cluster specific variables, such as resource reservations;

- The location and/or files the job will write its output to for retrieval;

- The external modules that the user may have indicated.

Additionally, this project also promotes a high degree of flexibility, and as will be

detailed in later sections, additional information may be stored. This could include information

23

such as compilation commands that are needed to compile the job, or additional packages

that the user wishes to install from source, or even additional variables solely destined for the

modules later on in the job’s process pipeline.

Another table that may be present (and discussed later in section Error Management

and Monitoring) is one used for collecting monitoring data regarding the clusters’ global

resources and availability. This table could contain, for each cluster located in the inventory,

information such as:

- The current resource utilization of the cluster (processor, memory, disk, etc.);

- The amount of jobs currently queued and waiting for execution;

- The amount of jobs currently running;

- The total number of nodes available;

- A history of reachability when the cluster was online or offline.

These information could be used for many monitoring purposes, including

dashboarding for administrators or users alike. One use case that could be integrated with the

aid of such information would be monitoring the job queues prior to submission and

estimating the waiting time based on the number of waiting jobs in order to offer alternative

solutions to the user for quicker job execution. However, this falls beyond the scope of this

project.

Modular Approach

As introduced in the Objectives & Challenges, a strong emphasis is placed on the

modular requirements of this job submission architecture. The ability to expand such a

submission platform would allow it to remain more future proof by allowing the community

to contribute and offer alternative steps and process in the submission workflow.

To tackle this challenge, it was important to define how deep the modularity should

go. From a high-level perspective, I conceptualized the submission process to be a sequential

list of tasks. This allows the modular aspect to be structured and interoperable while keeping

a degree of liberty.

24

Figure 3 - High-level overview of the modular approach.

The process is staged in three different steps:

- Pre-deployment/Staging

This first stage is responsible for accepting as input the job that a user wishes to

execute as well as the entirety of the parameters that are needed for the later

stages. It represents the front end of the solution. It is from this stage that all the

pre-processing of the task will occur and information will be gathered: the type of

job (serial, parallel, etc.), the destination cluster, the resources required, the data

files used, the runtime desired, and so on. These various parameters can be user

submitted or defined by another method such as through user created modules

(detailed later on).

- Job execution

In this stage, the solution will connect to the desired cluster on behalf of the user,

configure the required parameters as defined by the previous process, and execute

the job. In order to provide monitoring, the job will be executed from a “wrapper”

that will act as an overlay to maintain communication with the central submission

platform.

- Retrieval

This stage will take care of notifying the intended user of the end of the job

execution and of the retrieval of the job result by providing a space to view and/or

retrieve the results.

Module Interaction

To render the modular approach as interoperable as possible, these stages require a

precise list of inputs from the previous stage. This allows to maintain a clear structure in the

process while allowing user submitted modules to be leveraged. A more technical

representation of the steps envisioned with the modular aspect and the interaction between

the modules is represented in Figure 4 below.

25

This approach allows user created modules to be used at various points in the

submission pipeline. The Staging area allows external modules to be used for various tasks

relating to determining the parameters required for the execution. This is precisely where a

module leveraging Machine Learning/Artificial Intelligence to determine the resources

required for a job could be implemented. Another module that could be integrated would be

a module tasked with parsing the user’s code to determine the type of operation, whether it

is prominently serial or parallel based, or to look for fatal errors in the code and potential

memory leaks (see Future Works).

The Job Execution phase includes the possibility to implement modules to be executed

before and after the submitted task is ran. This preprocessing step could be leveraged to

include operations that should be ran on the destination cluster prior to run a task. This could

include operations such as downloading and building custom libraries for execution or

gathering and formatting data used by the job itself. The postprocessing step on the other

hand could be used for further processing a job’s output, to execute a custom clean-up

procedure, or to upload the results to a third-party external server. Both modular stages’

presence allow for a greater deal of flexibility to the customizability of the submission

workflow executed by a user.

The Retrieval phase includes the most basic process of gathering the information from

the user’s job completion and notifying the user of said completion. Depending on the

production environment, this phase could be further augmented with result migration

functions if the production environment makes use of external storage, independent from the

cluster’s storage, for storing the job results.

26

Figure 4 - Detailed overview of the modular approach.

27

In order to ensure the interoperability between user created modules and the

remainder of the infrastructure, it is imperative to define and impose a set of input and output

standards. Through this process, users wishing to define their own modules for integration

with the final platform would be required to comply to this imposed structure in order for the

process to follow through.

First of all, user modules would have to be submitted through a web platform. Along

with uploading their modules code, the submitter should also specify the input to be expected

and the output it provides.

To optimize modularity further, the platform would employ a dynamic dashboard from

which the user could select the various modules available and organize them in the order they

wish for them to be executed. Based on the user submitted input/output, the platform could

perform a verification to ensure the input/output relations are respected and validate the

submission for next step.

Through this dashboard-style organization, a user could choose which modules should

be executed sequentially. For example, one could imagine a set of modules for determining

the type of job (serial or parallel) and an Artificial Intelligence module to calculate resources

dependent on the type of job. An additional module could be available to analyze the code for

potential memory issues. The user would then be able to determine which modules are

executed and in what order through the dynamic dashboard to represent a sequence as

shown in Figure 5. The platform would then perform verifications to ensure those modules

are compatible based on the input/output provided by the user who created and submitted

the modules to the platform.

Figure 5 - Example of modules' sequence of execution as determined by a user.

The advantage of such a design is that multiple modules could be used at once, while

still ensuring compatibility between them. On the other hand, it also means that the input of

the last modules must be imposed and verified. The role of the Aggregator would be, as the

name implies, to aggregate the various outputs from the modules but most importantly to

28

validate that it has all the data and information needed to correctly submit the job for

execution.

As for the input data coming into the modules, it is not as crucial to ensure conformity

as for the output data at the end of the process. This is mainly due to the fact that the input

data will be passed as a parameter from one module to another (or from the beginning of the

process and into the first modules). Hence this data can be either used or ignored by the

modules themselves without having an impact on the functionality or the interoperability of

the process.

Inter Module Communication and Input/Output Parameters

The Default module (represented in Figure 4) would present a simple web interface

with a form for the user to submit the information required by the Aggregator to submit the

job for execution. This information should include:

- User submitting the job;

- Destination cluster to use;

- Resources required;

- The job file or the URL to a Git repository;

- Optionally, the compilation command to perform on the submitted file or in the

Git repository;

- Any external data used by the job;

o Could also be a single file, a URL, a TAR/ZIP archive;

- Any additional software or packages required.

These arguments described above would be the minimum required by the Aggregator

module to allow the Execution module to be able to run the submitted job. Some arguments

may be optional, such as the additional software or packages, but overall this is what the

Aggregator module must validate prior to pursuing the process.

In the presence of custom user submitted modules, additional parameters must be

present in order for the subsequent steps and sub-processes to be aware of the presence of

additional modules to be executed in the pipeline.

The first additional argument is an array to represent the additional modules to

execute and in which order of execution. To allow each module to have its own set of

29

argument and parameters, the array or list should contain within each entry a dictionary

object with following values:

- An index for the order of execution;

o To ensure compatibility with data structures using unordered arrays by

default;

- The module’s name;

- Compilation command and arguments;

o If the module is written in a compiled language as opposed to interpreted;

- Execution command;

o Again, if the module has been written in C++ for example, the execution will

differ than from a Python script;

- Arguments to be passed at command execution;

- Modules resulting output;

o Filled after module execution.

These extra array parameters should be present at most three times in the data

structure passed between steps, one for each potential sequence of external modules present

in the workflow: staging, preprocessing and postprocessing.

While these structures could be dropped after each major step in the workflow (i.e.:

the Execution step does not require the Staging’s sequence of custom modules), it remains of

potential interest to keep such information for future-proofing reasons. Keeping this

information between steps allows for future modules to perform operations based on the

knowledge of previous operations performed in the workflow’s sequence.

Note that for this to be possible, the modules must also be written in order to accept

a “keyword arguments” style as last parameter (such as the kwargs in Python or the argv in

C++). With such a support, the modules could be consistently executed and passed as last

parameter the data structure maintained by the modules’ supervisor.

The concept of passing as last argument the entirety of the platform-wide data

structure would empower the developers and their created modules with the knowledge of

the entire process’s information, including global parameters, which custom modules are yet

30

to be executed and how, and which modules were already executed and what result did they

yield.

User Created Modules

As has been hinted in the previous section, one of the desired strengths of this platform

is not only to allow the inclusion of user created modules in the workflow of the job execution,

but also to allow users to write modules in different languages.

It is for this specific reason that the data structure that is carried between various steps

includes information such as compilation and execution specifications. This would allow

modules written in Python or Java to be simply executed using the Python interpreter or the

Java VM, while languages written in C or C++ to be compiled for the specific cluster and then

executed.

The major pitfall of this implementation is the sensibility to errors as well as the

potential difficulty in troubleshooting module errors in the workflow. While module error

management is out of the scope of this project per se, this issue could be mitigated at least in

part by a couple of mechanisms.

Module contribution guidelines should be redacted and very strict on input parameters

and output data format. This would minimize the risks associated with bad interpretation of

input and output data. Other contribution guidelines should also include indications on the

compilation and/or execution information required for each module.

The wrapper in charge of executing the modules should be capable of not only

capturing the output from the module’s standard output, but also be capable of capturing and

storing the output from the module’s standard error output. This would be able to provide a

minimum of information as to any module’s execution errors, which could be reported both

to the user who submitted the task, as well as to the user who created the module.

31

Task Submission & Follow-up

As introduced in the Modular Approach section, the stage of Job Execution is taken

care of by a “wrapper”. This wrapper will act as an overlay as a means of managing and

monitoring the underlying process tasked with the job execution. This process is in part

inspired by the Ansible project10, which uses Python and SSH to remotely manage and

orchestrate large number of machines.

While this thesis is mainly programming language agnostic, this is a rare case where

the Python language is highly motivated for this part of the project. The reason being that the

goal of this project is to remain largely independent from the underlying middleware used

throughout the clusters, as well as to be compatible with a wide array of destination clusters

and heterogeneous environments. As a direct result of this independency, no external

software should be required to be deployed in the clusters.

To this end, Python becomes a primary choice for the wrapper development language

for many reasons. The Python interpreter is available on a large majority of UNIX and Linux-

based systems and is installed out-of-the-box and ready to use. Another advantage of Python

is that, unlike compiled languages, Python is portable and does not require to be recompiled

for the destination system. This makes a Python-developed wrapper compatible with the

majority of HPC clusters out-of-the-box, making it relatively effortless to expand the list of

destination clusters.

Development language aside, as introduced earlier, the role of the wrapper is to

provide an overlay for management and monitoring. The process envisioned is to leverage

SSH tunnels (once again a feature readily available on the majority of HPC clusters) to connect

to the head/master node and deploy the wrapper software along with the job files and all the

parameters described in the Inter Module Communication and Input/Output Parameters

section.

As represented in Figure 4 under Module Interaction, a Setup step is part of the

wrapper’s first task. This Setup step is itself divided into a two-phase part. The first part of the

setup task is to gather information about the destination system. This is sub-step used to

10 More information at www.ansible.com. Source code available at github.com/ansible/ansible.

http://www.ansible.com/
https://github.com/ansible/ansible

32

gather information such as the operating system, the overall resources available and other

information related to the shell environment. On subsequent connections, it is used to update

such information to maintain the remote platform’s inventory up to date.

The second phase of the setup task is responsible for maintaining and configuring the

environment. The first part will be to ensure that the required Python packages are present

and up to date. The second part is will be to gather the job files according to the user input

(such as cloning the job’s Git repository from the URL or unpack the job files from the

submitted file/folder), install any additional software required and/or run any compilation

command indicated by the user upon submission (if applicable).

With the setup complete, the wrapper will then execute any Preprocessor modules

indicated by the user, catch the output result of each module and pass them to the next

module, if multiple modules are present, or pass the module(s)’s output to the Job Execution

step.

For the Job Execution phase, the wrapper will execute the job as configured for the

destination cluster’s workload manager. In this paper’s scenario, the workload manager used

by the target cluster is restricted to Slurm. This implies that the wrapper will create the bash

script on-the-fly, using the parameters passed by the previous steps, and add the job to the

queue. The wrapper will then monitor the progress of the job, sending periodic updates to the

remote platform for the user to monitor as well (view Error Management and Monitoring for

more details).

Upon job completion, the wrapper will then move on to the Postprocessor phase and

execute any modules indicated and catch the output, using the same process as for the

Preprocessor phase. Once the Postprocessor is finished, the wrapper then completes its

execution by sending the result back to the platform for the last step in the workflow.

Independency from the Workload Manager

As mentioned at numerous occasions, amongst the objectives of this project is to

ensure the generic approach to interacting with the underlying workload

managers/schedulers of any HPC clusters. This method ensures that submission of a job is

possible and successful, regardless of the heterogenous nature of the destination clusters.

33

This independency has a major limitation: in order to have this abstraction layer, there

must be at least one component aware of the workload manager and what interactions are

needed to correctly abstract it in a manner that seems transparent to the remainder of the

execution.

Remaining on the Python approach envisioned for the wrapper, one method to

implement this abstraction would be to design a module/package that would return a

different object depending on the current cluster’s workload manager, while still using

consistently named methods and variables regardless of the underlying differences.

Knowing the underlying workload manager is possible thanks to the Clusters Inventory

database containing the needed information. The abstraction could then easily be

implemented though an abstract factory design pattern. The abstract factory would allow for

the entirety of the wrapper to rely on generic method names and static variables, with the

abstracting module/package providing the abstract constructors containing all of the

abstraction layer.

Error Management and Monitoring

Due to the complexity of the workflow presented in this thesis, the modular approach

and the number of components requiring interaction between one another is bound to

present errors at some point in a job’s execution.

While the wrapper’s function acting as overlay would certainly allow it to catch errors

and report them, it is important to note that this type of error management is not within the

original scope of this paper. As such it is assumed that any module’s execution and the job

submitted is devoid of any errors.

The primary concern in error management for this paper’s scope is the reachability of

the HPC clusters upon job submission. Additionally, it felt adequate to incorporate some kind

of monitoring mechanisms in order for users to not only be aware of whether the desired

target cluster was online or not, but to also be warned of the resources already in use on the

destination cluster.

34

Error Management

Due to the more extensive monitoring mechanism described in the next sub-section,

the verification of a cluster’s reachability becomes somewhat of a trivial task. To periodically

monitor whether the clusters in the platform’s inventory are up and running, the use of ICMP11

Echo-Request messages12 at regular intervals, and the subsequent update of the information

in a database, should suffice in providing both current and historical record on clusters’

reachability. This information could be displayed in both a front page and a monitoring

dashboard, providing useful data for both users and administrators.

Moreover, an additional verification mechanism could be implemented so that

whenever a user accesses the submission form, or more specifically the destination cluster

page, an ICMP Echo-Request message could be sent to either all clusters, or the selected

cluster. This would allow to provide the user with the most up to date information on a

cluster’s reachability.

This kind of monitoring could also be leveraged by an additional step in the workflow;

one could envision a form that would request only the type of operation a job requires, such

as parallel, serial or single threaded. Based on this information, along with the cluster’s

supported operations, current reachability and resource monitoring information (detailed

below) all stored in a database, the platform could perform the choice of destination cluster

to maximize job efficiency, minimize the job’s queue time on the cluster, and ensure the

destination cluster is live and running.

Cluster Monitoring

As introduced earlier, the wrapper’s overlay mechanism provides a number of

advantages, one of them being the ability to act as a “chaperone” for the job being executed

on the cluster.

In order to provide information to the users through the platform, the wrapper could

be leveraged to include a “phone home” feature. This feature would periodically send

information back to platform for monitoring purposes. This information could include global

cluster resource utilizations such as processor, memory and disk usage, the number of cluster

11 Internet Control Message Protocol.
12 Otherwise more commonly referred to as a “ping”.

35

nodes currently available, as well as the number of jobs currently running and the number of

jobs currently waiting in queue. The same feature could also send information about the job

currently submitted and chaperoned by the specific wrapper.

As with the reachability data, this information could be collected and stored in a

database and subsequently displayed in a dashboard for users and administrators to monitor

the status of the various clusters in the platform’s inventory.

Once more, while this thesis aims to be language and technology agnostic, one

technology that could easily be leveraged for this single purpose is a RESTful API. Given that

the target platform is mostly aimed at being a web platform with a graphical user interface, a

REST API is a rather simple technology to implement in parallel. This would provide the

wrapper with an efficient communication channel for the “phone home” feature, allowing to

periodically perform POST/PUT operations with monitoring data regarding both the cluster

and the current job’s status.

Result Retrieval

As indicated by Figure 4 detailing the various steps in the job submission’s workflow,

the last step of the Execution process is for the wrapper to hand over the operation to the

Retrieval process. This last step is tasked with notifying the user of the end of the job

execution upon receiving a notification from the wrapper ending its execution on the cluster.

As already discussed in Error Management and Monitoring, a REST API service is

already of prime interest for a monitoring function of the jobs’ execution and clusters’

resource utilization. As a result, the REST API service can also be reused for notification

mechanism. This solution also aligns with modern standards and solutions in addition to the

JSON approach of RESTful APIs being fully compatible with our inter-module communication’s

data structure employing a key-value pair approach.

The wrapper’s last task in the Execution process would be to make an API call to the

platform’s endpoint, submitting the data structure discussed in Inter Module Communication

and Input/Output Parameters and all its additional values to the platform’s notification

endpoint. This would trigger the Retrieval step to execute the Notifier process that would

send a mail to the job submitter.

36

Thanks to the data structure discussed, it should also be possible to notify the user if

the job was unable to finish due to an error, in addition to providing the error message that

was caught on the standard error output by the wrapper. This would require in the API

endpoint’s POST payload a flag indicating whether the execution was successful or not and in

the case of the latter, what error message to send to the user.

Job Result Storage

In order to maintain the platform’s footprint as small as possible, the actual result of

job’s output will not be stored on the same server as the one hosting the platform. Prior to

making an API call, the Wrapper will store the result in a dedicated space for later retrieval by

the user.

As per the configuration of the CÉCI clusters, the job’s result will be stored on a more

long-term location, to allow for a larger time frame for users to retrieve their job result. In

order to support other cluster configuration than CÉCI’s, the long-term location storage for

finished job should be stored in the inventory database (as mentioned in Database).

Additionally, the result should also be placed into an archive to make the download more

optimized as opposed to requiring the transfer of multiple small files.

Since the result will not be shared on the platform proper, and to keep within the scope

of simplifying the user’s workflow without requiring him/her from connecting to the cluster,

when a user connecting to the platform wishes to download their job’s result, the platform

could act as a proxy between the client and the cluster where the results are stored.

Proxying of the download is performed by the platform initiating an SCP13 connection

to the cluster to download the job’s result in memory. Once entirely in memory, the transfer

between the user and the platform can be done through a regular HTTP channel.

This method requires a “buffering” process as seen from the client side, as well as

requiring the platform to have sufficient memory at its disposal for short-term storage. This

approach allows to reduce the requirements of the platform by leveraging the existing storage

of the clusters, reducing the overall resource footprint without compromising user experience

in any significant way.

13 Secure Copy Protocol – file transfer protocol between network hosts using SSH.

37

Proof of Concept

In order to concretely apply the concepts presented above as well as to demonstrate

the feasibility of this project, a Proof of Concept has been developed. The following sections

will describe the architecture and mechanisms of the Proof of Concept as well as motivate

some of the choices and the reasons why they differ from the concepts introduced earlier.

Features Implemented

Out of the features proposed in the Overview of the Solution, a subset of features has

been selected. These features have been selected based on three major aspects and

objectives of the project:

- Modular approach: the ability to integrate various external user-created modules

on the fly;

- Compatible with heterogeneous environments: the ability to operate with

different HPC clusters out of the box;

- Independency from the underlying workload managers: the ability for the source

code to be as generic as possible despite any difference in a cluster’s underlying

workload manager.

Additionally, some accessory features have also been implemented, such as an API

server and a database for centralized access to data related to existing clusters and submitted

jobs. The Notifier role has also been implemented for a simple follow-up on submitted jobs.

Design Choices

Due to the relatively trivial aspect of the web graphical interface, the proof of concept

has been developed as a standalone command line interface tool. In order to replace the user

input that would be performed by the web interface, the user specified parameters are given

to the program through the use of YAML files. As will be defined later, user input includes both

information specific to a job as well as any potential external modules to run.

38

The YAML file format has been chosen for its simple human readability, while

remaining complex enough to support some basic data structures such are lists/arrays and

dictionaries.

The programming language chosen for developing this proof of concept is Python. The

reasons behind this choice are partially for its low learning curve, but mainly for the arguments

already presented in Task Submission & Follow-up; Python is a very widespread and highly

portable programming language across Linux and UNIX based distributions, thus working

towards the heterogenous support objective of the proof of concept. Additionally, Python is

a rather explicit language with good human readability, making it ideal for an open source

project that can be forked and extended by anyone interested in expanding the project.

Architecture

To keep the proof of concept in a similar design as the project’s conceptualized

architecture, the proof of concept’s architecture has been developed as follows:

Figure 6 - Overview of the Proof of Concept’s architecture.

39

The command line tool is executed on the user’s local computer, and will interact with

an external API server, which itself will interact with a dedicated database. The command line

tool will connect to a cluster and deploy a wrapper, which will submit a given job and will also

interact with the same API server. Additionally, as an added feature, the wrapper will also

interact with an SMTP server indirectly through the API server.

Proof of Concept Workflow

As mentioned previously, the web interface has been replaced by a command line tool,

which is executed locally on the user’s computer. The user must redact one or two YAML files

(one for the job’s specific information, the other for the modules definition) and submit them

to the command line tool. The following paragraphs present an outline of the proof of

concept’s execution workflow, also represented in Figure 7 below.

Upon submission the tool will validate the information provided in input, and if

indicated, will start executing the Staging external modules. If no external modules have been

given, or if the modules have executed successfully, the tool will locally validate the data one

last time to ensure that all the required information is present in the user input.

Before attempting to connect to a cluster, the tool will make sure the cluster is

reachable using a single ICMP Echo-Request/Reply. If the original destination cluster is not

reachable, the tool will query the database for any other cluster that is reachable and presents

a similar affinity to the preferred job types as the original destination cluster. This allows to

manage against any unavailable cluster while still giving the user the ability to select an

alternative cluster based on the knowledge of the potential type of job the user wishes to

perform.

Once a cluster has been selected, the tool will connect to the destination cluster via

SSH using the private key provided by the user. The tool will transfer the wrapper module and

the files necessary for the remote operation: the user input data as well as user’s modules

specification and the necessary module files (if applicable). For performance reasons, the

wrapper and modules are first compressed into a TAR archive to optimize data transfers.

40

Figure 7 - Overview of the Proof of Concept tool's workflow.

41

Once the required files have been correctly transferred and unpacked, the tool

remotely executes the wrapper in background before closing the connection and returning a

UUID to the user to identify the submitted job.

Once the wrapper has been launched, a series of four major steps will take place,

mainly reflecting the detailed overview presented in Figure 4 earlier (section Module

Interaction):

- The setup phase will prepare the environment by executing any user defined pre-

required commands, downloading or unpacking the job files, and executing the

compilation commands (if necessary);

- The module handler will compile and/or run any pre-processing modules defined

by the user;

- A workload manager module will create the script according to the destination

cluster’s workload manager, the resources requested by the user and the job

execution specified, before submitting the job and waiting for its completion;

- Once completed, the module handler will once again compile and/or run any post-

processing modules defined by the user before handing over the completion.

Upon completion of its execution, the wrapper will contact the API to update the final

status of the job, which in turn will launch the notifier module which will send an email to the

job owner to notify of the job’s completion status.

User Input

As mentioned, the user input is passed to the command line tool via a YAML file. The

structure outlined in Figure 8 below is separated into a series of key/pair values. Some of these

values are mandatory and are validated by the tool before execution. Other values are

optional due to the potential use of external modules to define them further down the

workflow (one example being the resources values).

The job key is used to specify the job file to be used. This value can be a single file, a

folder containing the job files or a URL to a git repository. This allows the flexibility to either

transfer local files or to clone a git directory to the cluster for execution.

42

Figure 8 - Sample output of a YAML user input file.

Some keys are flexible, such as requirements, compilation and execution which can

accept either a single value or an array of values. The proof of concept has been developed to

accept both types of variable to allow greater freedom to the user, and greater readability in

the case of single values.

Requirements represents operations that should be performed prior to the job

submission, notably to download or install additional packages from source. The compilation

is also performed prior to submission should the job files require compilation. Both those

steps are executed during the setup phase described earlier. Finally, the execution key are

commands to be placed in the workload manager’s script. In the case of this proof of concept,

these values would be placed in a Slurm script.

In the other entries, the username, private_key and passphrase values are used to

authenticate to the clusters. The private_key is the path to the private key file (both absolute

and relative paths are supported, both on Linux and Windows based operating systems) while

the passphrase value is used for ease of use. Due to security concerns, if the user is not willing

to store his passphrase in cleartext, it is possible to omit this information, in which case the

passphrase will be queried upon the execution of the tool.

43

The resources key accepts another key/pair dictionary with various keys depending on

the resources the user wishes to reserve for his or her job. The values were mostly determined

based on the CÉCI’s documentation as well as the Script Generation tool also provided by the

CÉCI14. These keys are later interpreted by the workload_manager module detailed later.15

The results key is used to list the file or files where the job will write the result of its

operation. This field and its use are detailed later in section Result Storage and Retrieval.

Lastly the kwargs is a fully optional entry that is independent from the tool’s normal

operation. As will be developed later on, this entry is used to store other key/value pairs solely

used to communicate variables to or between custom modules further down the operation

workflow.

External Modules Support

In a similar manner as for the user input, the external modules process order and the

user defined details were substituted for an external configuration file. Once again, a YAML

file is used with a specific structure to define which modules to execute, how to execute them

and in what order, as presented with the sample output in Figure 9 below.

As introduced in the Modular Approach section of the overview, the proof of concept

has also implemented the three main stages of the external modules’ execution: Staging,

Preprocessing and Postprocessing. This allows greater flexibility and freedom to the end user

in the overall workflow of execution.

Additionally, each stage is divided into a key/value dictionary, each key indicates the

order of execution in the stage’s process, while the value holds the information linked with

the module’s execution in another key/value object. The keys related to the module’s

execution are tasked with defining how to execute the module according to the module

creator’s guidelines.

14 Script generation tool available at www.ceci-hpc.be/scriptgen.html.
15 For a list of keys possible, please refer to the README file in the project’s GitHub repository.

http://www.ceci-hpc.be/scriptgen.html

44

Figure 9 - Sample output of a YAML user modules specification file.

The first key, named module, serves two purposes. First and foremost, it identifies the

name of the module itself. Secondly, and most importantly, it is the name of the module’s file,

which must be stored in a specific location. All of the module values in the file will be

aggregated by the tool upon first execution in order to create a list of modules that need to

be transferred along the wrapper. This is done for optimization: by compiling the list once and

packaging all the modules in a single TAR archive file, a single file needs to be transferred over

SSH instead of transferring each file in a granular fashion. This improves the overall efficiency

of the initial transfer of the wrapper and the modules.

The compilation key is a fully optional key. Given a module written in a compiled

language, this key is used to specify the command to execute in order to compile the module

on the destination cluster. This key allows the modular approach framework to support

modules written in languages both compiled and interpreted. Furthermore, by allowing the

user to install external packages through the requirements directive of the User Input, users

are able to install other languages that may be used by external modules.

45

The execution key represents the command to execute for the module to be run. While

a variety of modules could be executed using a variety of languages and interpreter, a common

factor with all the modules during execution is that an additional argument is appended at the

end the of the indicated command. This last argument is a string representing a JSON dump

of the entire runtime variables used by the tool and wrapper right before the module’s

execution.

By passing the runtime variables as parameter, this allows the modules to be aware of

the entire context of the job submission process. The runtime information contains mainly the

entire user input provided (as described in User Input), which includes the kwargs directive

with user defined variables, in addition to the information about the current cluster. A

modules directive is also present, containing the user defined information about the modules,

both that have been or will be executed, but also includes the output of each module already

executed.

This method of passing the runtime information to the module and storing its output

presents the opportunity for the modules to make use of the information regarding the job

execution. It also allows the modules to make use of any data concerning all the other modules

in the workflow (both those that have already ran or those that have yet to be executed) in

addition to allowing them to make use of the output created by any other modules previously

executed.

This process does come with a major pitfall in the proof of concept: the execution of

the modules is done through the subprocess Python package, using the Popen() method,

which allows to monitor and directly communicate with the process. However, the

communication is done through the standard input/output and error outputs. As a result, in

order to capture the output produced by a modules, it must be created on the process’s

standard output. While functional, it implies that the last directive of any module before

exiting must be to print its output to the STDOUT channel such as through a printf() in C and

C++ or a print() in Python.

46

Workload Manager Independency

In order to maintain the code fully independent from the underlying workload

manager, the proof of concept contains a package named workload_manager.py. This

package provides a level of abstraction to act as an interface for the underlying manager in

use on the destination cluster.

The approach used is similar to an abstract factory design pattern. The

workload_manager.py provides a get() function accepting as single parameter a string

denoting the workload manager in use on the current cluster. This same value is obtained

from a database containing the information regarding the cluster (in our case, from the API

server).

The get() function returns a class object containing various methods used to interact

with the underlying manager. The methods contained within the class are generically named,

such as submit_job() and get_job_status(), for basic interaction with the manager.

The class also contains some static keyword lists such as TERMINATED_STATUSES,

TERMINATED_SUCCESFULLY_STATUSES, WAITING_STATUSES, and RUNNING_STATUSES.

These lists are used to monitor the current job state during its execution and notify the client

of any change. Note that two separate lists exist for processes that have terminated and that

have terminated successfully. It is essential to know not only when a submitted job has

terminated, for notifying the user first and foremost, but in order to continue the process

correctly the wrapper must ensure that the status returned confirms that the job has

terminated successfully as opposed to being stopped due to an error.

While the proof of concept includes a single class for the Slurm workload manager, the

goal of the project would be to have the workload_manager module extended to support a

wider range of workload managers using the same interface as the one currently in place and

with the identical return format.

By using this approach, the majority of the code is allowed to remain fully independent

from the workload manager used by the underlying cluster thanks to the use of generic class

methods and variable names. This allows the tool to make decisions based on information

about a running job obtained from the abstract factory and comparing these values with a

47

subset of static variables containing the expected values based on the workload manager class

returned by the same abstract factory method.

Result Storage and Retrieval

As mentioned in the User Input section, upon submission, the user is asked to specify

the name, or the list of names, of the file(s) where the job will write its result(s). This

information is initially used solely for reference as it is not used by the tool until the retrieval

phase, later initiated by the user after the job’s completion. This value is still stored and

transferred to the wrapper running on the cluster, so as to remain a variable usable by any

subsequent modules.

For the sake of simplicity, the proof of concept assumes that any job stores its result in

the same folder where it was executed. All submissions performed by the tool are executed

in the user’s home folder on the cluster, in a directory named after the job’s UUID (the same

UUID returned to the user upon submission). Depending on whether the job file is a single file,

a folder or a git repository, the execution may vary slightly. Therefore, when executing a job,

the wrapper saves the precise location, in its absolute path format, and saves it with the

runtime information, later uploaded to the database through the API.

To retrieve a job, the user must run the same tool with different arguments, mainly

the UUID of the job the user wishes to retrieve. Before attempting to connect, the tool

contacts the API to get the latest status of the job execution. Until the status is within a range

of accepted values defined by the destination cluster’s workload manager (through the same

abstract factory mechanism as described above in Workload Manager Independency), the tool

will not attempt to connect to the cluster, and notifies the user that the job is still being

executed. If the job has terminated successfully, the tool will contact the API to get the original

user input submitted by the user (in order to use the results key), as well as to get the job’s

working directory (saved by the wrapper upon execution of the job). Additionally, the

destination cluster’s information is also fetched to connect to the cluster.

For security reasons, this proof of concept does not store neither the private key nor

the passphrase of the user, hence before connecting to the cluster, the user is also asked to

provide the private key and enter the passphrase to connect to the cluster.

48

Once connection is established, using the results and the job’s working directory

values gathered beforehand, the tool transfers the file, or files, to the current directory.

Improvements

The proof of concept is fully functional as is with the code being freely available in a

public Git repository available at github.com/GaetanLongree/MASI-TFE. However, as

introduced in the beginning, this proof of concept presents a reduced scope of the features

discussed in the complete Overview of the Solution, some of which were omitted due to their

complexity in implementation in respect to what they brought to the proof of concept’s

demonstration of feasibility.

Amongst some of the most important improvements that were not implemented is the

validation of output/input between modules. The main reason for this feature not being

present is the overhead in the data needed to be stored separately in its own database. The

concept of validation is based on a centralized platform where users can submit their modules

for other users to use. Implementing the validation between modules would imply developing

a similar submission solution, hence increasing the size and complexity of the proof of

concept. Since the proof of concept is intended to be used with specific modules with a full

knowledge of what each modules do, this part seemed overly complex for the relative benefit

it would add to the proof of concept as a whole.

Similarly, the proof of concept includes some parsing of user values. The parsing

performed is to ensure correct operation of some of the components later down the process’s

pipeline. While in a finished version, a lot more input parsing and validation would be required,

once again this proof of concept is not intended for final users, but for demonstration

purposes, and uses a subset of predefined values within a range of known parameters. Thus,

working on making the proof of concept as resilient as possible to bad user input was deemed

counter productive in relation to what it would add to the final proof of concept.

One feature that could have been implemented was the permanent storage location

based on the destination cluster. The goal of this feature, as partially explained in Result

Storage and Retrieval, would be to move the job’s result to a more permanent storage for

later retrieval as opposed to leaving the results stored in the user’s home directory. This would

https://github.com/GaetanLongree/MASI-TFE

49

allow the result to be stored for potentially longer period of time, and in a space dedicated to

long-term storage. This was not implemented for the simple reason that through the

development of the proof of concept, the API was an accessory implementation. The API itself

ended up being developed much later in the development process, with the core tool

functionalities having already been written earlier in the development lifecycle. Thus,

implementing the storage location functionality would have required a major refactor of the

tool, increasing on the development, and most importantly testing, debugging and analyzing

times required in this project. Furthermore, such a feature does not impact the functionality

nor the demonstration capability of the proof of concept, hence representing only a minor

feature.

Next Steps

The goal of this proof of concept was to demonstrate the feasibility of the project’s

concepts presented throughout the Overview of the Solution. While limited in its scope and

features, it still integrates the key aspects which motivate the need for such a solution in a

multi-cluster environment.

This proof of concept’s tool is limited to a command line utility, but it represents the

equivalent of the back-end aspect of the submission platform envisioned. The next phase of

development would be to migrate this demonstration proof of concept to a more full-fledge

prototype aimed at direct user interaction and evaluation. By involving users early in the

project development, this would allow to gain even more valuable feedback that could guide

the development of the project and would also help to more closely align the project with the

user’s day to day needs.

Ideally, the workload_manager module mentioned earlier in Workload Manager

Independency could also be the subject of a wider development, by including abstract

factories for additional workload managers, increasing the list of supported workload

managers. Such an initiative would allow for the project to increase the compatibility with

more cluster implementations. This approach could be further motivated by an open source

initiative towards expanding the current proof of concept.

50

Future Works

This thesis, and the ensuing proof of concept, have been redacted in such a manner as

to leave the door open for future improvements or derived work. The following paragraphs

outline potential and non-exhaustive avenues for further study and improvements on this

project, or avenues that could be the subject of their own research and paper.

Additional External Modules

One of the key objectives of this project is to give users the freedom and flexibility to

integrate external modules in their submission process. This modularity offers the possibility

to integrate various external modules with varying functions (some of which have already

been mentioned in this paper).

One such module could be a “resource estimator” module tasked with parsing the

submitted code and provide an estimation of the resources required to compute the task. This

module could also use information such as the destination cluster and the knowledge of the

cluster’s preferred type of operation in order to better calibrate the resources required. Such

a module could perform an estimation based on a simplistic “sandbox execution” approach or

make use of more advanced technologies such as Machine Learning/Artificial Intelligence to

study the resources required.

Another module idea that could be explored would be one tasked with parsing the

user’s submitted code and analyze it for any potential programming errors. The module could

search for errors as simple as syntax mistakes, or as complex as potential memory leaks, race-

conditions and loop optimization. The parsing process could also be used to analyze the code

and determine the type of task required: whether it is more oriented toward serial or parallel

execution (information that could be further leveraged by a resource estimation module

described above). One could argue that such a module could also directly integrated into the

platform’s submission workflow out-of-the-box for direct error checking upon submission.

51

Dedicated Packet Manager

As introduced in the Modular Approach and later developed in the Proof of Concept,

the Setup stage of the execution process can be used to install additional packages based on

the commands provided by the user. Despite giving the user freedom over what and how he

wishes to install additional packages, this process can be cumbersome and impede the

simplistic approach of a job submission.

A solution that could work towards simplifying installation of additional packages in

the submission workflow would be a dedicated package manager. This could allow users to

select additional packages to deploy by submitting a list of packages required. Such a solution

would require interpreting the packages required and make use of an abstraction layer to

perform the commands to install the packages on behalf of the user. This abstraction would

also require access to a database of known packages and known deployment methods based

on the destination system, including differentiation the operating system and architecture

used by the clusters.

52

Conclusion

This thesis aimed at presenting a new architecture to offer as an automated job

submission platform for researchers wishing to submit tasks to high-performance clusters. As

has been presented, despite the existing solutions, both academic and commercial, very few

offer both an independency from the underlying clusters’ middleware and a high degree of

flexibility for the users.

Throughout this thesis, I have presented a proposal for a new architecture that would

offer the best of both worlds. Through the use of an abstraction layer with the abstract factory

design pattern, the platform can be fully independent from any underlying workload manager

or scheduler used by a cluster. The modular approach also stands as a great flexibility feature

for any researcher wishing to submit a task. This very approach allows a user to redefine the

workflow of a job submission process, by allowing him to integrate various external processes

in the form of modules.

Additionally, the architecture also presents some forward-thinking features to allow it

to work with a variety of heterogenous environments. Through a dynamic inventory system,

the platform can easily integrate additional clusters for the researchers to use, and an

automated fact-gathering process on these same destination systems allows the platform to

be aware of the systems’ capacity and reachability. The result retrieval process, leveraging

existing storage on the destination clusters, also makes the architecture relatively low-profile

in regard to deployment.

As demonstrated through a proof of concept, this automated job submission

architecture is not only feasible, but also presents itself as a versatile solution as a command

line utility tool. The modular approach has also proved to be capable of a high degree of

adaptability when offering support for multiple programming languages, both compiled and

interpreted, thus reinforcing the flexibility and strength of this approach as a submission

workflow.

Despite the success of the proof of concept in demonstrating the feasibility of the

architecture’s concepts, due to the scope of the project and the destination systems limited

to clusters part of the CÉCI, the abstraction layer has only been developed for a single

workload manager. As a result, the effectiveness of the independency from heterogeneous

53

workload managers/schedulers used by different clusters is only as strong the abstraction

module itself. Such a project could stand to benefit the most from a community driven open-

source development model in order to expand the list of supported workload managers

through contributions by the community.

Finally, this thesis is merely the presentation of a feasible concept for an automated

job submission platform. Based on the proof of concept, the project could be fully expanded

to represent the architecture presented here: combining the command line tool with a full-

fledged web interface for a more user-oriented interaction. Furthermore, as stated multiple

times, this project and its modular approach could be expanded in a continuous manner

through user-created modules, adding more and more features to the submission workflows.

This approach makes this architecture a great opportunity to act as a launch pad for future

projects and development.

54

Bibliography

Abstract Factory. (n.d.). Retrieved March 2019, from Refactoring Guru:

https://refactoring.guru/design-patterns/abstract-factory

Adaptive Computing. (n.d.). Moab HPC Suite. Retrieved February 2019, from Adaptive

Computing: http://www.adaptivecomputing.com/moab-hpc-basic-edition/

Advanced Clustering Technologies, inc. (n.d.). eQUEUE. Retrieved February 2019, from

Advanced Clustering Technologies:

https://www.advancedclustering.com/products/software/equeue/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., . . . Zaharia, M.

(2009). Above the clouds: A berkeley view of cloud computing. Dept. Electrical Eng.

and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, 28(13).

Retrieved February 2019

CECI. (n.d.). CECI Documentation. Retrieved February-May 2019, from CECI Documentation:

https://support.ceci-hpc.be/doc/

CECI. (n.d.). Consortium des Équipements de Calcul Intensif. Retrieved February-May 2019,

from CECI: http://www.ceci-hpc.be/

Colignon, D., Lozano, A., Cabrera, J., Wautelet, F., Skozlowskij, S., Leplae, R., . . . Keutgen, T.

(2018). CÉCI News by the Sysadmins. CÉCI Scientifc Day, (p. 8). Namur. Retrieved April

2019

Colignon, D., Lozano, A., Cabrera, J., Wautelet, F., Skozlowskij, S., Leplae, R., . . . Keutgen, T.

(2019). CÉCI News by the Sysadmins. CÉCI Scientific Day, (pp. 8-15). Brussels. Retrieved

April 2019

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., . . . Katz, D. S. (2005).

Pegasus: A framework for mapping complex scientific workflows onto distributed

systems. Scientific Programming, 13(3), 219-237. Retrieved February 2019

Donders Centre for Cognitive Neuroimaging (DCCN). (n.d.). Running computations on the

Torque Cluster. Retrieved February 2019, from The HPC Wiki: https://dccn-hpc-

wiki.readthedocs.io/en/latest/docs/cluster_howto/compute_torque.html

55

Elmroth, E., & Tordsson, J. (2005). An interoperable, standards-based Grid resource broker

and job submission service. First International Conference on e-Science and Grid

Computing (e-Science'05) (p. 9). IEEE. Retrieved February 2019

Lee, W., McGough, A., & Darlington, J. (2005). Performance evaluation of the GridSAM job

submission and monitoring system. UK e-Science All Hands Meeting, (pp. 915-922).

Retrieved February 2019

Marzolla, M., Andreetto, P., Venturi, V., Ferraro, A., Memon, S., Memon, S., . . . Hedman, F.

(2007). Open standards-based interoperability of job submission and management

interfaces across the grid middleware platforms glite and unicore. Third IEEE

International Conference on e-Science and Grid Computing (e-Science 2007) (pp. 592-

601). IEEE. Retrieved February 2019

NICE Software. (n.d.). EnginFrame - HPC Portal. Retrieved February 2019, from NICE Software:

https://www.nice-software.com/products/enginframe

Pegasus WMS - Automate, recover, and debug scientific computations. (n.d.). Retrieved

February 2019, from Pegasus Workflow Management System: https://pegasus.isi.edu/

Slurm Federated Scheduling Guide. (n.d.). Retrieved April 2019, from Slurm Workload

Manager: https://slurm.schedmd.com/federation.html

Varrette, S., Bouvry, P., Cartiaux, H., & Georgatos, F. (2014). Management of an academic HPC

cluster: The UL experience. 2014 International Conference on High Performance

Computing & Simulation (HPCS) (pp. 959-967). IEEE. Retrieved February 2019

Walker, E., Gardner, J. P., Litvin, V., & Turner, E. L. (2006). Creating personal adaptive clusters

for managing scientific jobs in a distributed computing environment. 2006 IEEE

Challenges of Large Applications in Distributed Environments (pp. 95-103). IEEE.

Retrieved February 2019

What is GridShell/Condor, and where is it installed on XSEDE? (2018, January 18). Retrieved

April 2019, from Indiana University: https://kb.iu.edu/d/axdd

